Organizational Research By

Surprising Reserch Topic

Experts Most Trusted Topic


iosretrieve rectangle shaped image from the background image


iosretrieve rectangle shaped image from the background image  using -'ios,opencv'

I am working on an implementation where I have a rectangle shaped image in an big background image. I am trying to programmatically retrieve the rectangle shaped image from the big image and retrieve text information from that particular rectangle image. I am trying to use Open-CV third party framework, but couldn't able to retrieve the rectangle image from the big background image. Could someone please guide me, how i can achieve this?

UPDATED:

I found the Link to find out the square shapes using OpenCV. Can i get it modified for finding Rectangle shapes? Can someone guide me on this?

UPDATED LATEST:

I got the code finally, here is it below.

    - (cv::Mat)cvMatWithImage:(UIImage *)image
{
    CGColorSpaceRef colorSpace = CGImageGetColorSpace(image.CGImage);
    CGFloat cols = image.size.width;
    CGFloat rows = image.size.height;

    cv::Mat cvMat(rows, cols, CV_8UC4); // 8 bits per component, 4 channels

    CGContextRef contextRef = CGBitmapContextCreate(cvMat.data,                 // Pointer to backing data
                                                    cols,                       // Width of bitmap
                                                    rows,                       // Height of bitmap
                                                    8,                          // Bits per component
                                                    cvMat.step[0],              // Bytes per row
                                                    colorSpace,                 // Colorspace
                                                    kCGImageAlphaNoneSkipLast |
                                                    kCGBitmapByteOrderDefault); // Bitmap info flags

    CGContextDrawImage(contextRef, CGRectMake(0, 0, cols, rows), image.CGImage);
    CGContextRelease(contextRef);

    return cvMat;
}
-(UIImage *)UIImageFromCVMat:(cv::Mat)cvMat
{
    NSData *data = [NSData dataWithBytes:cvMat.data length:cvMat.elemSize()*cvMat.total()];
    CGColorSpaceRef colorSpace;
    if ( cvMat.elemSize() == 1 ) {
        colorSpace = CGColorSpaceCreateDeviceGray();
    }
    else {
        colorSpace = CGColorSpaceCreateDeviceRGB();
    }

    //CFDataRef data;
    CGDataProviderRef provider = CGDataProviderCreateWithCFData( (CFDataRef) data ); // It SHOULD BE (__bridge CFDataRef)data
    CGImageRef imageRef = CGImageCreate( cvMat.cols, cvMat.rows, 8, 8 * cvMat.elemSize(), cvMat.step[0], colorSpace, kCGImageAlphaNone|kCGBitmapByteOrderDefault, provider, NULL, false, kCGRenderingIntentDefault );
    UIImage *finalImage = [UIImage imageWithCGImage:imageRef];
    CGImageRelease( imageRef );
    CGDataProviderRelease( provider );
    CGColorSpaceRelease( colorSpace );
    return finalImage;
}
-(void)forOpenCV
{
    imageView = [UIImage imageNamed:@"myimage.jpg"];
    if( imageView != nil )
    {
        cv::Mat tempMat = [imageView CVMat];

        cv::Mat greyMat = [self cvMatWithImage:imageView];
        cv::vector<cv::vector<cv::Point> > squares;

        cv::Mat img= [self debugSquares: squares: greyMat];

        imageView = [self UIImageFromCVMat: img];

        self.imageView.image = imageView;
    }
}

double angle( cv::Point pt1, cv::Point pt2, cv::Point pt0 ) {
    double dx1 = pt1.x - pt0.x;
    double dy1 = pt1.y - pt0.y;
    double dx2 = pt2.x - pt0.x;
    double dy2 = pt2.y - pt0.y;
    return (dx1*dx2 + dy1*dy2)/sqrt((dx1*dx1 + dy1*dy1)*(dx2*dx2 + dy2*dy2) + 1e-10);
}

- (cv::Mat) debugSquares: (std::vector<std::vector<cv::Point> >) squares : (cv::Mat &)image
{
    NSLog(@"%lu",squares.size());

    // blur will enhance edge detection

    //cv::Mat blurred(image);
    cv::Mat blurred = image.clone();
    medianBlur(image, blurred, 9);

    cv::Mat gray0(image.size(), CV_8U), gray;
    cv::vector<cv::vector<cv::Point> > contours;

    // find squares in every color plane of the image
    for (int c = 0; c < 3; c++)
    {
        int ch[] = {c, 0};
        mixChannels(&image, 1, &gray0, 1, ch, 1);

        // try several threshold levels
        const int threshold_level = 2;
        for (int l = 0; l < threshold_level; l++)
        {
            // Use Canny instead of zero threshold level!
            // Canny helps to catch squares with gradient shading
            if (l == 0)
            {
                Canny(gray0, gray, 10, 20, 3); //

                // Dilate helps to remove potential holes between edge segments
                dilate(gray, gray, cv::Mat(), cv::Point(-1,-1));
            }
            else
            {
                gray = gray0 >= (l+1) * 255 / threshold_level;
            }

            // Find contours and store them in a list
            findContours(gray, contours, CV_RETR_LIST, CV_CHAIN_APPROX_SIMPLE);

            // Test contours
            cv::vector<cv::Point> approx;
            for (size_t i = 0; i < contours.size(); i++)
            {
                // approximate contour with accuracy proportional
                // to the contour perimeter
                approxPolyDP(cv::Mat(contours[i]), approx, arcLength(cv::Mat(contours[i]), true)*0.02, true);

                // Note: absolute value of an area is used because
                // area may be positive or negative - in accordance with the
                // contour orientation
                if (approx.size() == 4 &&
                    fabs(contourArea(cv::Mat(approx))) > 1000 &&
                    isContourConvex(cv::Mat(approx)))
                {
                    double maxCosine = 0;

                    for (int j = 2; j < 5; j++)
                    {
                        double cosine = fabs(angle(approx[j%4], approx[j-2], approx[j-1]));
                        maxCosine = MAX(maxCosine, cosine);
                    }

                    if (maxCosine < 0.3)
                        squares.push_back(approx);
                }
            }
        }
    }

    NSLog(@"squares.size(): %lu",squares.size());


    for( size_t i = 0; i < squares.size(); i++ )
    {
        cv::Rect rectangle = boundingRect(cv::Mat(squares[i]));
        NSLog(@"rectangle.x: %d", rectangle.x);
        NSLog(@"rectangle.y: %d", rectangle.y);

        if(i==squares.size()-1)////Detecting Rectangle here
        {
            const cv::Point* p = &squares[i][0];

            int n = (int)squares[i].size();

            NSLog(@"%d",n);

            line(image, cv::Point(507,418), cv::Point(507+1776,418+1372), cv::Scalar(255,0,0),2,8);

            polylines(image, &p, &n, 1, true, cv::Scalar(255,255,0), 5, CV_AA);

            int fx1=rectangle.x;
                NSLog(@"X: %d", fx1);
            int fy1=rectangle.y;
                NSLog(@"Y: %d", fy1);
            int fx2=rectangle.x+rectangle.width;
                NSLog(@"Width: %d", fx2);
            int fy2=rectangle.y+rectangle.height;
                NSLog(@"Height: %d", fy2);

            line(image, cv::Point(fx1,fy1), cv::Point(fx2,fy2), cv::Scalar(0,0,255),2,8);

        }

    }

    return image;
}


Thank you.
    

asked Sep 16, 2015 by vimaldas2005
0 votes
30 views



Related Hot Questions



Walkin Jobs Opening



Government Jobs Opening


...